The Preconditioning Effect of Uncured EVA Rolls on the Long-Term UV Exposure of Glass/Glass Modules

Luca Gnocchi¹, Alessandro Virtuani^{1,2}, Christophe Ballif^{1,2}

¹ Photovoltaics and thin-films electronics laboratory (PV-lab), EPFL, Neuchatel (CH) ² PV Center, Suisse center for electronics and microtechnology (CSEM), Neuchatel (CH)

Motivation

- Material and process quality are critical to product quality lifetime and at all manufacturing including before stages, production.
- The use of *high quality materials* can improve the reliability of solar panles.
- In particular, we studied the impact of storage

AFTER LAMINATION

Storage conditions of uncured EVA rolls

ID code	Temperature [°C]	Rel. Humidity [%]	Time [days]
EVA-30	20	30	5
EVA-65	30	65	5
EVA-100	20	soaked in water	5

Aging test conditions: IEC 62788-7-2,A3

conditions - of uncured EVA rolls - on lamination quality and mid-term ultraviolet (UV) exposure of Glass-Glass PV modules.

	[°C]	[°C]	[%]	[W/m ²]	duration
·	65	90	20	0.8	$630 \mathrm{kWh/m^2}$

* CUMULATIVE UV dose ≈ 10 years outdoor exposure in a mid-latitude country

AFTER THE LAMINATION

Only minor aesthetic defects (bubbles along the edges) in the modules encapsulated with a poorly stored EVA (i.e. EVA-65 and EVA-100).

DURING UV EXPOSURE

- Both modules encapsulated with the optimally stored EVA (EVA-30) and the poorly stored EVA (EVA-65) showed no signs of degradation.
- In EVA-65 the temperature inside the climatic chamber (i.e. 65°C) allows to partially outgas the residual moisture and the EVA can

DURING INDOOR UV AGING TEST

rearrange its crystal morphology to a more stable one (DSC results not shown here).

• When the storage conditions are extremely poor (i.e. EVA-100) we observed a constant reduction of the current lsc due to EVA **yellowing** (EL images shows that the **BSF cell** is not degraded) starting from a UV dose of 200 kWh/m² (i.e. 3 years of outdoor exposure).

CORRELATION BETWEEN \downarrow Isc and \uparrow Yellowing

Transmittance measurementes and correlation between module current (Isc) and EVA-100 Yellowing Index (Y.I).

Conclusion

- Assumed awless modules after the production, could instead rapidly degrade after installation because of poor material quality.
- If good polymer storage and handling practices are carefully respected, the results tend to suggest that EVA can still be a viable solution to encapsulate G-G PV modules, for deployment in geographical zones where the humidity levels are not so high during the year (i.e. temperate climates).
- If these conditions are not observed, or in the event of module operating in a hot-humid climate, • we believe that this may affect the long-term performance of G-G modules encapsulated with EVA.

Acknowledgments

The authors gratefully acknowledge Xavier Niquille and Andrew Fairbrother for their help.

Also, fundings from European H2020 GO-PV project (grant agreement N 727529).

