This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792059

Jun. 21st 2022 Solar PV Modules Market Trends, Materials & Manufacturing Processes Olatz Arriaga Arruti - EPFL

co-organized with

(11:30-12:30)

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAIC SYSTEM FOR LOW ELECTRICITY COST

PV Modules: Market Trends, Materials & Manufacturing Processes

Session Contents

- 1. PV Module Fabrication Steps
- 2. PV Technology Market and Costs
- 3. Crystalline Silicon Solar Cells
- 4. Solar Cell Interconnections
- 5. Lamination Process & PV Module Materials
- 6. Some Degradation Mechanisms
- 7. Manufacturing of Reliable Silicon Heterojunction Glass/Glass Modules

*STC = Standard Test Conditions: 1000 W/m² @ 25°C.

PV SYSTEMS TECHNOLOGIES AND DESIGN

2. PV Technology Market and Costs

PV Technology Trends

Market				
Crystalline Silicon 95% market share	Thin Films 3-5 % market share	III-V solar cells Space application		

R&D stages		
Concentrator PV Failed market entrance	Perovskites (+ tandems)	Other technologies Organic, DSSC, quantum dots

2. PV Technology Market and Costs

Crystalline Silicon (c-Si)

Wafer based (bulk semiconductor)

- Processing of wafers
- Series connection of individual solar cells

Thin film

III-V multi-junction

- Deposition on large area substrate •
- "Monolithic series integration" of the cells
- Grown epitaxially on crystalline wafers
- Developed for space applications → very costly
- Used in concentrated PV (CPV)

GoPV Project | SUMMER SCHOOL
PV SYSTEMS TECHNOLOGIES AND DESIGN

6

Figure 3: Evolution in solar PV module costs by quarter, 2018-2022* USD per watt peak (Wp)

Production costs [cts\$/Wp]		
	2017	2020
Total	37	20
Polysilicon	8.7	3
Wafer	5.8	3
Cells	8.6	4
Module	13.8	10

*Forecast third-quarter values shown for 2022 Source: Rystad Energy SolarSupplierCube 7

Bottom electrode

- Intrinsic (pure) **semiconductor** material (e.g. Si).
- Doped with impurities to become conductor → +(p) or (n) charges transporting the current.
- Under light \rightarrow absorption of **photons** if $hv > E_g$ (E_g : semiconductor bandgap).
- Photogenerated carriers move towards the junction and cross it.

Metallic contacts extract the

current

J. Hurni (2022)

3. Crystalline Silicon Solar Cells

Low Temperature Process

Aluminium Back Surface Field (AI-BSF)

Challenges:

- **Optical losses** \rightarrow reflection of photons at rear surface
- **Recombination losses** → at ٠ metallic contact
- **Ohmic losses** \rightarrow high series resistance at interfaces

3. Crystalline Silicon Solar Cells

Potential for bifaciality

Conventional AI-BSF cells do not give option for bifaciality

Passivated Emitter and Rear Contact (PERC)

World market share of monofacial and bifacial cells

Novel solar cell concepts promote the development of bifacial technology

GoPV Project | SUMMER SCHOOL PV SYSTEMS TECHNOLOGIES AND DESIGN

*STC = Standard Test Conditions: 1000 W/m² @ 25°C.

Frame

Glass

- Encapsulant
- Cells and Interconnections
- Encapsulant
- Backsheet
 - Junction Box

String interconnect

A. Shah, Solar cells and modules (2020) Chapter 9, A. Virtuani

1. From solar cells to modules

Commercial c-Si modules have 60/72 series-connected solar cells

Series connection \rightarrow to get high voltage

• Cells must be current-matched

Parallel connection → currents add up
Voltages of cells/strings need to be balanced

Chapter 9, A. Virtuani

4. Solar Cell Interconnections

100%

PV SYSTEMS TECHNOLOGIES AND DESIGN

2032

ITRPV (2022)

Interdigitated Back Contact (IBC) solar cells

No need of busbars

Advantages:

- More aesthetically appealing.
- Ideal candidate for Building Integrated PV (BIPV)

Challenges:

• Cost

Smart-wire technology (SWCT)

Multi-ribbon/multi-wire technology (MWT)

- Conventional ribbons and busbars replaced by **round** wires with small diameter.
- Ribbons (3-6) replaced by 20+ wires.
- \uparrow ribbons $\rightarrow \downarrow$ current distribution \rightarrow wires with lower conductance
- \downarrow silver consumption
- ↓ sensitivity of cell/module to cracks/breakages → ↑ durability

A. Shah, Solar cells and modules (2020) Chapter 9, A. Virtuani

Silicon Heterojunction solar cells

Conventional soldering processes require **high** temperatures \rightarrow need to find a solution for SHJ

Low temperature process \rightarrow ribbons are "soldered" by using:

- Busbar technology → not mainstream
- Electrically Conductive Adhesives (ECA)
- MWT/SWCT.

Challenges:

- Use of more silver.
- More expensive.
- Need to adapt stringers in commercial manufacturing processes.

Why don't we install bare cells in the field?

PV modules are exposed to **external stressors**:

- **Temperature** variations due to performance and environment.
- **High humidity** conditions → rain, dew...
- **Mechanical stress** → wind, snow, hail..
- Irradiance \rightarrow light, UV

Solar cells and interconnections are **encapsulated/packaged** to:

- 1. Protect electrical circuit from weathering.
- 2. Provide **structural stability** and protect **mechanical integrity.**
- 3. **Isolate electrical circuit** from environment (e.g. protect operators from electrical shocks).

October 26-29th 2020

How to we bring all together? ...bringing cohesion to the full module sandwich?

The lamination process

- Frame
- Glass
- Encapsulant
- Cells and Interconnections
- Encapsulant
- Backsheet
- Junction Box

Vacuum membrane laminator

- Lamination «recipe»: combination of steps in the process.
 - Specific to a given encapsulant.
 - Critical in ensuring the modules' long-term performance.
- **Poor lamination process** \rightarrow occurrence of failure modes in the field (e.g. delamination).

*In a good laminator the temperature uniformity of the heating plate is well controlled below $\leq 2^{\circ}$ C.

Preheating Curing step Cooling step-**160** step Temperature T [°C] 0.9 120 Sure 0.6 0 80 0.3 **bar 40** 0.0 200 400 **600** 800 1000 0 Time *t* [s]

An encapsulation cycle can take **10-20 min**.

- **1.** Pre-heating step (100s to 500s) \rightarrow the upper and the lower chambers are evacuated.
 - Removal of the air (de-gas) to minimize the risk of voids formation.

The softening encapsulant temperature (60-70 °C) is reached.

- Curing step (300s to 900s) → the module layups lie on the heating plate directly. A
 - Enhances the adhesion between the encapsulant and neighboring components.
 The gel content (crosslink degree) at the end of the process must be >80%.

3. Cooling step \rightarrow the encapsulated PV modules cool to room temperature.

Module structure

«Sandwich» or module stack:		Fragile silicon solar cells need to be prote order to operate outdoors for 25 years (at le	cted in east).
Fr	ont cover —	→ 3.2 mm-thick glass	
	Encapsula	ant	
	Stringed	I cells	ween components
	Encapsul	ant	
Re	ear cover —	Backsheet (or polymeric a second glass	foil) or
Modules generally have 60 or 7	2 cells (depend	ing on applications).	
Can be smaller for specific aplli	cations: boats, t	GOPV Proj telcos, etc.	ect SUMMER SCHOOL 25

Glass

Front Glass

5. Lamination Process & PV Module Materials

Tempered glass about 3.2 mm-thick is used as a front cover.

- Goal \rightarrow provide **mechanical strength**.
- **Optical improvements** \rightarrow texturized and/or with an antireflection coating. lacksquare

Encapsulant

Front Glass

Encapsulant

Stringed cells

Encapsulant

Backsheet or Rear glass

Main functions:

- Provide **adhesion between components** (cells-front glass, cells-backsheet, front glass-backsheet).
- **Physical insulation** protect from weather (UV, rain, humidity, etc.);
- Electrical insulation keep high voltage away from people and keep current from flowing out of the array circuit to ground;
- **Good optical properties** couple as much incoming light as possible into the cells;

Encapsulant

Ethylene Vinyl Acetate copolymer (EVA) has the best properties – cost ratio.

Front Glass

Encapsulant

Stringed cells

Encapsulant

Backsheet or Rear glass

Multiple additives are present in the commercial EVA rolls:

- **Curing agent** → cross-linking reaction during lamination.
- UV absorbers.
- UV stabilizers/anti-oxidants → decompose curing agent residues;
- Adhesion promoters → increase adhesion between EVA and glass.

Encapsulant alternatives to EVA

Encapsulants share market

Chemically cross-linked elastomer

Irreversible covalent bondings

Cross-linked Polyolefines (POE)

- Replacement of vinyl acetate group
- No formation of acetic acid
- Cross-linking necessary

Examples: STR POE Encapsulant, 3M Solar Encapsulant Film PO8100N, Mitsui ASCE,

Physically cross-linked thermoplastic elastomer

(Thermo)-reversible bondings (lon and hydrogen bonds, crystallites)

Thermoplastic Polyolefines (TPO)

- Replacement of vinyl acetate group
- No formation of acetic acid
- No cross-linking

Examples: Borealis Quentys, DOW Engage, DNP Solar encapsulants, DuPont Ionomers etc.

nile). GOPV P

- Development of alternative **polyolefines.**
- **EVA** will still remain the **dominant encapsulant** (...for a while).

GoPV Project | SUMMER SCHOOL PV SYSTEMS TECHNOLOGIES AND DESIGN 29

Polymeric Backsheet

Most PV modules \rightarrow composite polymer sheet as backsheet.

• Multi-stack structure of **three layers** with an overall thickness of 280-400 μ m.

T-P-T backsheet

PVF (polyvinyl-fluoride) - **Tedlar**[®] → **protects** the internal circuit (and PET layer) from weathering agents

PET (Polyethylene terephthalate)
→ isolates the module
electrically and provides
mechanical stability.

Modules – Innovative concepts

Glass

Encapsulant

Cells and Interconnections

Encapsulant

Backsheet

Junction Box

Innovative module concepts target:

- 1. Increased module performance by reducing Cell-to-Module losses.
- 2. Increased energy-yield.
- 3. Increased reliability.

GoPV Project | SUMMER SCHOOL PV SYSTEMS TECHNOLOGIES AND DESIGN 31

(a) Top view

(b) Side view

Modules – Innovative concepts

- **1.** Increased module performance
- 2. Increased energy-yield
- 3. Increased reliability

Half-cell modules $\rightarrow \downarrow$ cell interconnection losses

Shingled solar cells $\rightarrow \downarrow$ inactive space

Light capturing ribbons $\rightarrow \downarrow$ shadding losses

World market share of different cell aspect ratios In modules for wafer sizes < 182.0 x 182.0 mm²

A. Shah, Solar cells and modules (2020) Chapter 9, A. Virtuani

1 cell

GoPV Project | SUMMER SCHOOL PV SYSTEMS TECHNOLOGIES AND DESIGN 32

Modules – Innovative concepts

- 1. Increased module performance
- 2. Increased energy-yield
- 3. Increased reliability

Anti-reflection coatings (ARC) on front surface of front glass $\rightarrow \downarrow$ reflection at front glass/air interface

Textured glass \rightarrow \uparrow collection of light at low angles

Modules – Innovative concepts

- 1. Increased module performance
- 2. Increased energy-yield
- 3. Increased reliability

Anti-reflection coatings (ARC) on front surface of front glass $\rightarrow \downarrow$ reflection at front glass/air interface

Textured glass \rightarrow \uparrow collection of light at low angles

Bifacial cells/modules \rightarrow collection of sunlight reflected by ground

World market share of monofacial and bifacial cells

EPFL

Modules – Innovative concepts

- 1. Increased module performance
- 2. Increased energy-yield
- 3. Increased reliability

Glass/glass modules \rightarrow additional protection in harsh environments (snow, hail or wind loads).

SWCT and MWT \rightarrow minimize the impact of cracks on the performance.

World market share of different front and back cover materials

Backsheet vs. Rear-glass

G-BS advantages:

- Cheaper.
- Lighter.
- Possibility to modify the «breathability» of the BS.

Module configuration share market

G-G advantages:

- Possibility to use bifacial cells.
- More rigidity (frameless).
- High insulation.
- 30 years performance warranty.

Bifacial modules (increase PV system's energy-yield) – are starting to enter the market.

This is the main boost for the adoption of glass/glass structures.

GoPV Project | SUMMER SCHOOL PV SYSTEMS TECHNOLOGIES AND DESIGN 36

Backsheet vs. Rear-glass

G-G

EPFL

Module power output:

- I-V curve @ STC. ٠ Major defects:
- Visual inspection. ٠
- Electroluminescent images. ullet

6. Product certification**

Pass a series of qualification tests** (i.e. IEC61215).

** It is a liability of the manufacturer.

7. Marketing & Installation

EPFL

GoPV Project | SUMMER SCHOOL 39 PV SYSTEMS TECHNOLOGIES AND DESIGN

Materials interactions under operating conditions

Multiple interactions between different components and outdoor stresses may lead to unwanted degradation reactions.

It reduces locally the pH inside the module \rightarrow metallic corrosion.

The main consequeces on the module performance are:

- Incresase of the electrical resistance **↑** Rs;
- Reduction of the fill factor \checkmark FF.

GoPV Project | SUMMER SCHOOL PV SYSTEMS TECHNOLOGIES AND DESIGN 41

6. Some Degradation Mechanisms

EVA degradation mechanism

- A non optimised lamination parameters
 → residue of cross-linking precursor
 - \rightarrow formation of **chromophores**.
- Additives degradation during exposure (i.e. UV absorbers)

EVA YELLOWING

• Humidity ingress in the module causes a loss of adhesion \rightarrow **DELAMINATION**

The main consequeces on the module performance:

• Reduction of transmittance $\rightarrow \downarrow$ **Isc**

6. Some Degradation Mechanisms

Backsheet degradation mechanism

OUPONT Cracking and delamination can compromise electrical insulation of the module

Yellowing can be a precursor to mechanical degradation and embrittlement of many backsheet polymers

7. Manufacturing of Reliable Silicon Heterojunction EPFL Glass/Glass Modules

Lessons learnt

Increased reliability when encapsulated in a good bill of materials (BOM).

Sensitivity to	Prevention
Water ingress & diffusion	Impermeable module structure → edge sealant (ES)
High voltages – Potential Induced Degradation (PID)	High-volume resistivity encapsulants → POEs, ionomer
UV exposure	Non UV-transparent encapsulants or with cut-off > 353 nm

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAIC SYSTEM FOR LOW ELECTRICITY COST

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792059

ĬM

Thank you for your attention!

Follow us

