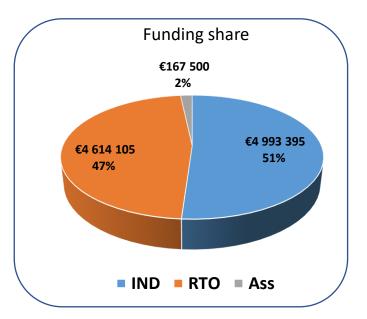
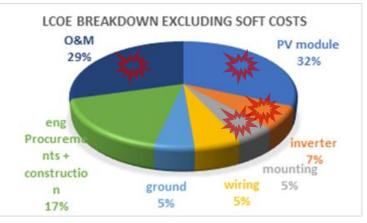


From Lab to Fab – Supporting PV Industry in Europe Contribution from GOPV project

Contact/Coordinator: stephane.guillerez@cea.fr

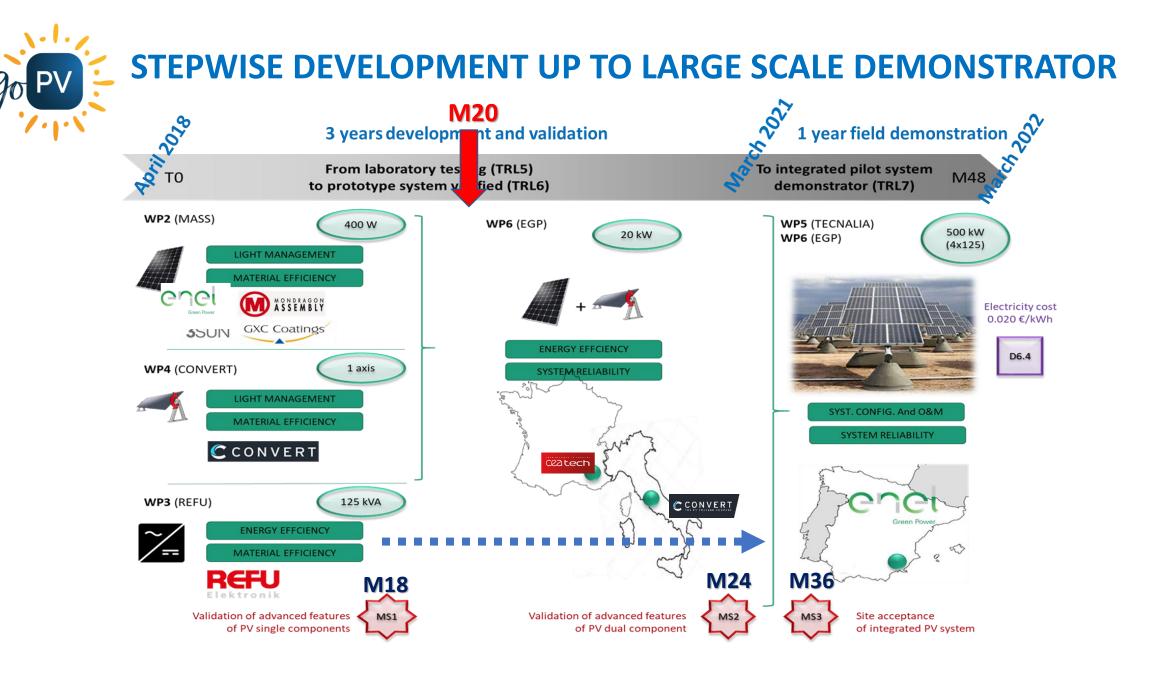

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAICS SYSTEM FOR LOW ELECTRICITY COST

Grant agreement N° 792059 11 partners Budget: 11,915 k€ Funding: 9,775 k€ Start date: 01/04/2018 Duration : 48 months


IND	RTO	Assoc.
Enel green Power (IT)	CEA (FR)	INES-PFE (FR)
GXC coatings (DE)	EPFL (CH)	
Mondragon Assembly (ES)	LEITAT (ES)	
REFU Elektronik (DE)	TECNALIA (ES)	
Convert Italia (IT)	RSE (IT)	

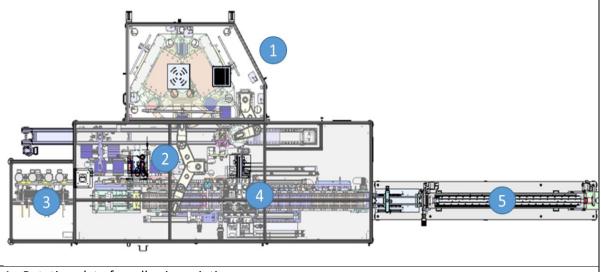
General/societal objectives

- Reduction of the cost of PV electricity for increasing its competitiveness and its share in the European electricity mix
- Creation of added value for European industrial players to be competitive on the global market


Estimated Breakdown of LCOE for PV plants > 100 kW in EU and US

Targeted LCOE = 0.02 €/kWh (GHI = 1900 kWh/m²/year)

PV plant cost element	GOPV developed component	Main characteristics	Targeted cost	Targeted lifetime
Module	Bifacial HJT modules	400W + bifaciality ≥ 90%	0,22€/W	35 years
Tracker	1 axis tracker	Low cost structural material	0,11€/W	35 years
Inverter	Current source string inverter	125 kVA + Energy efficiency ≥ 99%	0,05€/W	20 years
0&M	Advanced fault detection & diagnostics tool	Energy availability ≥ 99.5%	10k€/MW/Year	-

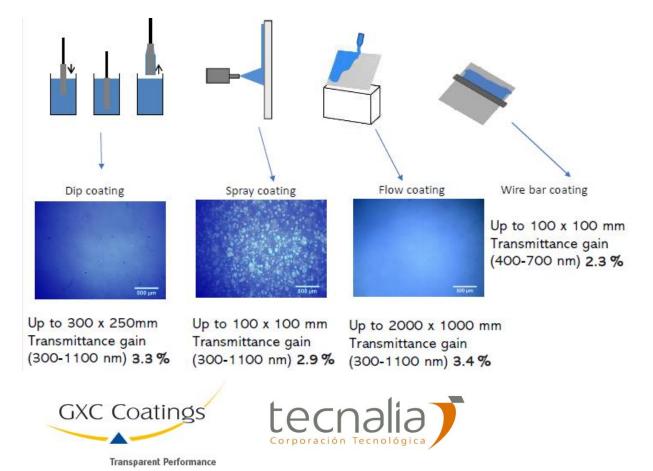

Higher efficiency, longer lifetime, lower cost components

Development of an innovative stringer

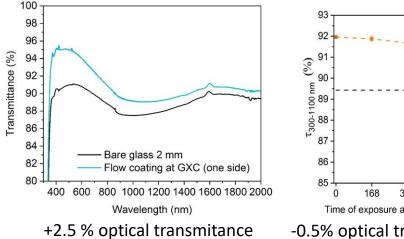
- To connect PV cells by gluing with ECA
- Enable to manage 6 to 8 ribbons, ½ cells

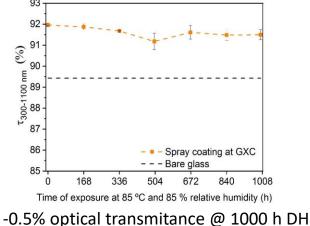
- 1.- Rotative plate for adhesive printing
- 2.- Cell transferring robot
- 3.- Ribbon feeding station
- 4.- Adhesive thermal curing
- 5.- String output belt

First demonstration: Fabrication of strings of 12 SHJ cells with 6 glued interconnection ribbons


Next steps:

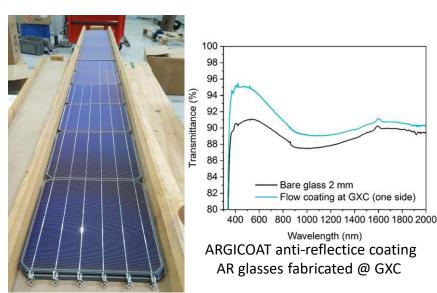
- Fine tuning of equipment and interconnection process
- Interconnection of ½ cells
- Optimisation of width/number of ribbons

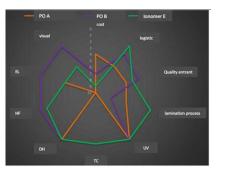



Development of an innovative AR-AS coating

- To improve light harvesting with a long lasting AR-AS glass coating
- Industrialization of process (patented by Tecnalia)

First demonstration: Fabrication of 2000x 1000 mm² AR treated glasses by flow coating


Next steps:


- Fine tuning of coating process (thickness homogeneity)
- Implementation of hydrophobic treatment
- Integration in glass production process

Development of an innovative bifacial SHJ module

- To increase conversion efficiency and increase lifetime
- To lower material consumption (silicon, silver, encapsulant)

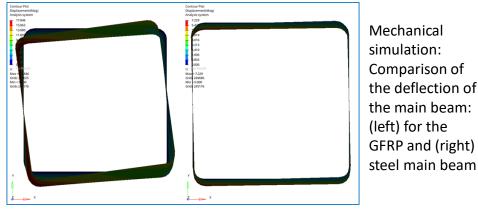
Selected encpasulant

First demonstration: Fabrication of 16 modules with avg power of 370 W (max : 375W)

Next steps:

- Improve module efficiency (AR coating, cell efficiency + ½ cells)
- Validate projected lifetime
- Reduce cell thickness and silver content

6 ECA-bonded ribbons interconnected cells Strings fabricated @ MASS



Development of an innovative 1 axis tracker

- To reduce cost of 1 axis tracker
- To optimize tracker structure for bifacial modules

2 materials tested

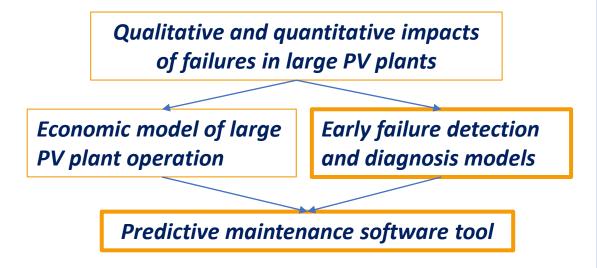
- Weathering steel : low cost
- Glass fiber reinforced polymer: corrosion resistance

New driving system and control unit

First demonstration: Fabrication of 5 trackers

Next steps:

- Validation of structural elements (field + wind tunel tests)
- Optimisation of the design (tracking +bifacial gain vs cost)



To reduce O&M cost

Construction of a toolbox

Next steps: Development and validation of tools

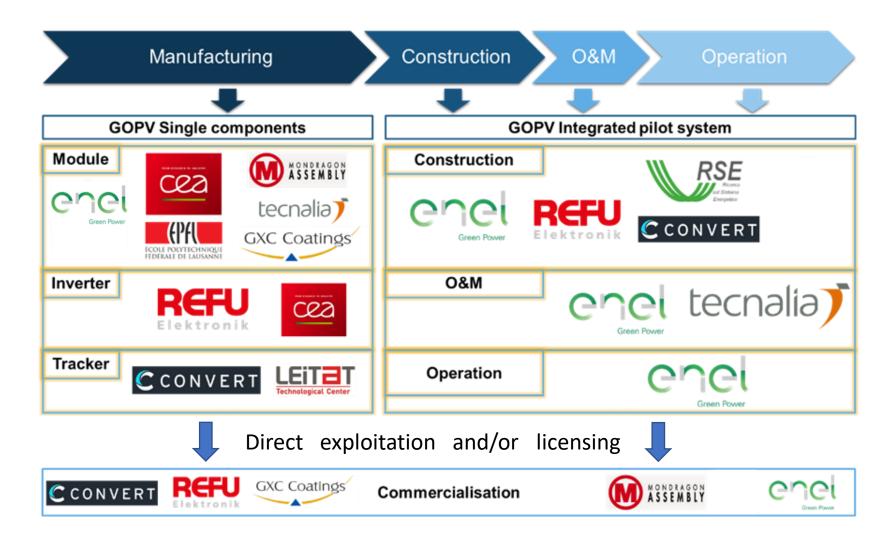
Development of an innovative string inverter

- To increase conversion efficiency and lifetime
- To reduce cost of string inverter

change of inverter topology (@ M15) \rightarrow SiC flying capacitors

(due to availability and cost of 1700 V SiC power electronics)

Max PV Power	215kW
DC Voltage	1500V
MPPT number	6
DC Current / MPPT	22A
AC Power	166kVA
AC Current	120 A
AC Voltage	800V (3/PE)
Max Efficiency	98.8%
EU Efficiency	98.3%


Next steps:

Validation of performances at the mockup level Fabrication of industrial prototypes

Partners in the value chain

Added value & exploitation potential for industrial partners To stay in the race

	Product	access to market	turnover (k€)	
	FIOddet		2022	2027
MONDRAGON ASSEMBLY	New advanced stringing equipment with advanced features in line with foreseen market evolution	2022	580	4 800
	HET bifacial modules with lower cost (€/W) and longer lifetime (vs Ampere)	2022	15 000	18 000
enei	PV plants integrating GOPV developments	2023		
Green Power	Improvement of O&M strategy to reduce operation cost	2023	24 000 420 000	
	Knowledge about future products emerging on the market for biding: continuous	continuous		420 000
GXC Coatings	Diversification of technology portfolio with access to the fast growing PV market: Creation of a new BU 'PV coating'	2022	11	5 250
REFU Elektronik	Hight efficiency string Inverter with SiC technology (Flying capacitor toplogy)	2022	1 200	54 320
	1 axis tracker optimised for bifacial modules with materials less costly than HDG steel	2022	30 800	165 000

From GOPV prototypes to products: very short time to market

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAICS SYSTEM FOR LOW ELECTRICITY COST

Thank you for your attention!

gopv-project

www.gopvproject.eu

GOPV has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 792059

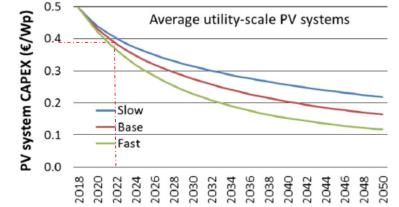
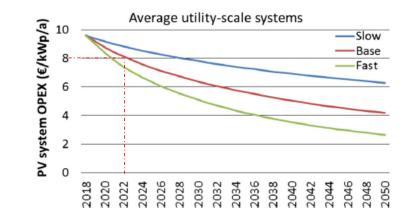
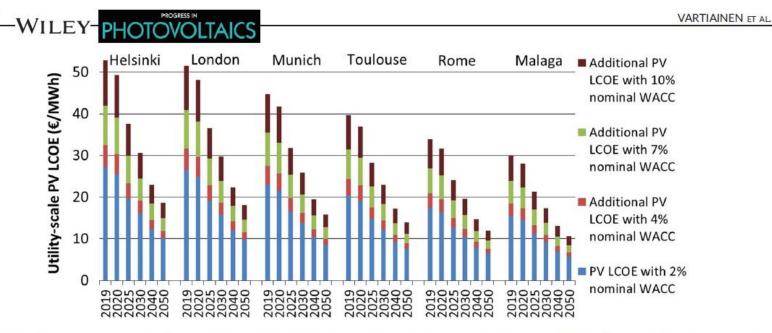
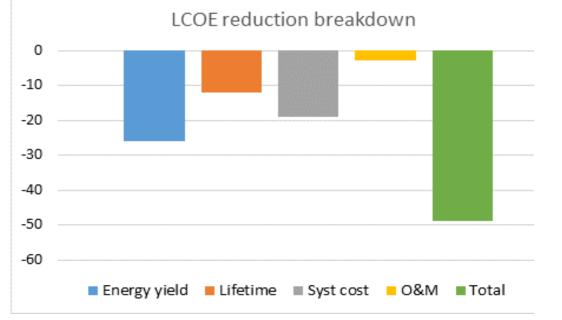




FIGURE 3 Utility-scale photovoltaics (PV) capital expenditure

FIGURE 9 Photovoltaics (PV) levelised cost of electricity (LCOE) in six European locations for the years 2019 to 2050; in 2019 euros, taxes not included [Colour figure can be viewed at wileyonlinelibrary.com]


FIGURE 4 Operational expenditure (OPEX) development for the years 2018 to 2050 in three different scenarios [Colour figure can be viewed at wileyonlinelibrary.com]

Source: Vartiainen_et_al-2019-Progress_in_Photovoltaics_Research_and_Applications (002).pdf - Adobe Acrobat Reader 2017

Underlying objectives	Target	Baseline (§2.1.1)	GOPV Gain
Obj 1 : Annual energy production rate	2360 kWh (AC)/kW	1700 kWh(AC)/kWp	+39 %
Ohi 2 · Comico lifetimo	35 years (1 inverter	25 years (2 inverter	10.00000
Obj 2 : Service lifetime	change)	changes)	+10 years
Obj 3 : CAPEX (excl. EPC)	0.38 €/W	0.47 €/W	- 0.09 €/W
Obj 3 : OPEX	10 €/MW/year	12 €/MW/year	- 2 €/ MW/year
Overall objectives	Target	Baseline	GOPV Gain
LCOE	0.02 €/kWh	0.04 €/kWh	- 0,02 €/kWh
EPBT (module)	1 year	1.4 years	-40 %

CONTRIBUTIONS TO LCOE REDUCTION

Main assumptions used for LCOE calculations:	
PV plant : 10 MW, insolation= 1900kWh/m ² /year (southern Europe)	
Financial conditions: WACC=7%, Equity ratio 20 %, Debt interest rate 5% on 15 years	
duration.	
Reference scenario for 2017: PERC+ monofacial module (60 cells,300Wp) at 0,33€/W,	
Fix mounting at 0.08 €/W, inverter at 0.06€/W + replacement cost, O&M at 0,012€/W/year.	
GOPV scenario for 2022: 'GOPV' module (72 cells, 400Wp) at 0.22€/W, GOPV 1 axis	
tracker at 0.11€/W, inverter at 0.05 €/W + replacement cost, O&M at 0.010€/W/year.	