

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792059

Oct. 28th PV grid-connected Inverter Design & Performance (14:30-16:30)

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAIC SYSTEM FOR LOW ELECTRICITY COST

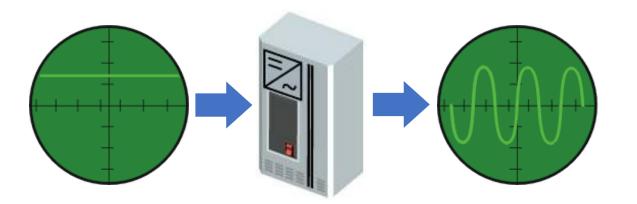
Antoine DIZIER – INES

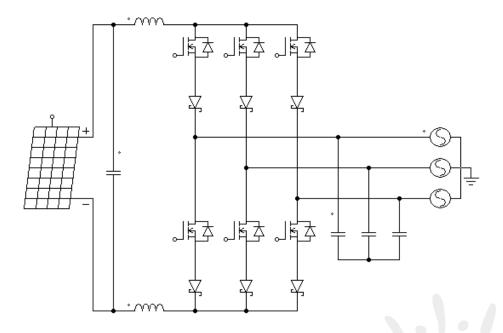
Agenda of the session

- 1. Inverter Objectives & Operation
- 2. Efficiency of grid-connected inverters
- 3. Types of inverters & Market
- 4. Inverter sizing and design
- 5. Inputs on GoPV project

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

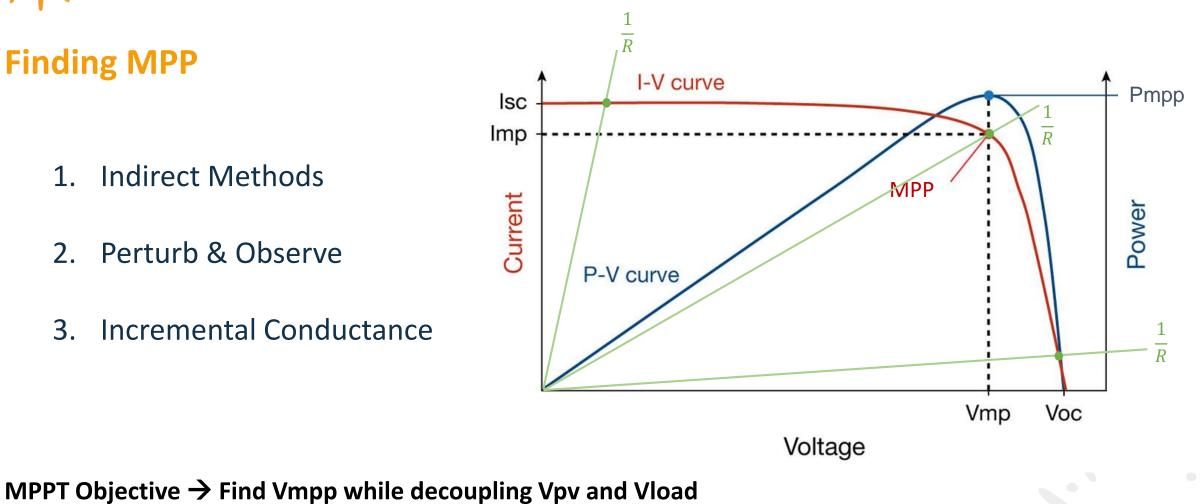
Agenda of the session


- 1. Inverter Objectives & Operation
- 2. Efficiency of grid-connected inverters
- 3. Types of inverters & Market
- 4. Inverter sizing and design
- 5. Inputs on GoPV project



Converting DC into AC

Using switch operation to convert DC into AC



PV inverters – Operation

Finding MPP

- 1. Indirect Methods
- 2. Perturb & Observe
- Incremental Conductance 3.

1. Finding MPP – Indirect Methods

Constant Voltage Method

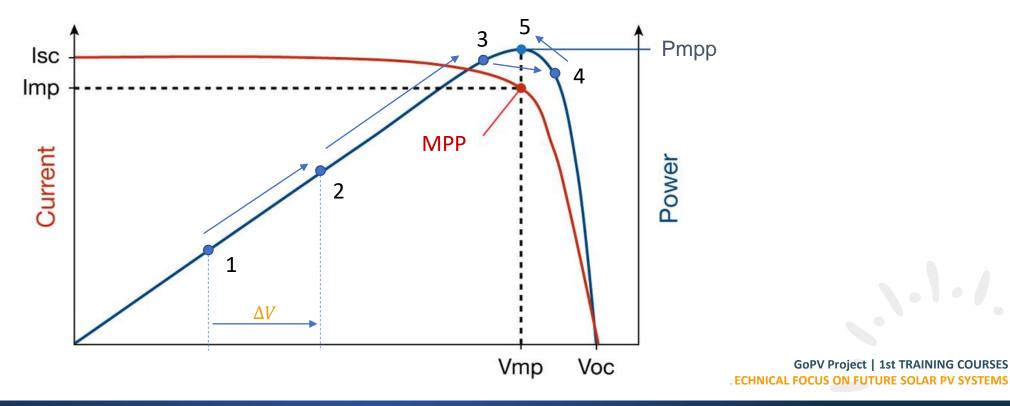
Using the specs of the PV array, apply the STC voltage that gets the MPP

Fractional Open Voltage Method

Considering Vmpp is a distinct fraction of Voc, apply a 70-80% fraction to find Vmpp

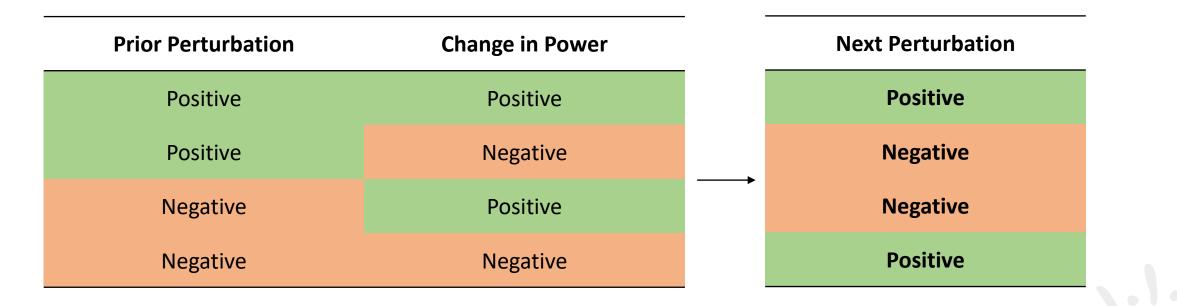
Short Current Pulse Method

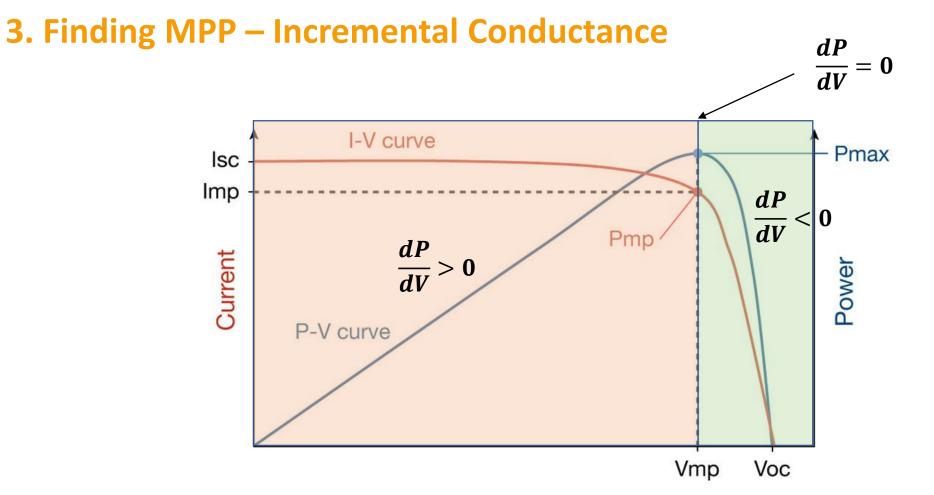
Considering Impp is a distinct fraction of Isc, apply around 90% fraction to find Impp


GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

2. Finding MPP – Perturb & Observe

Make incremental changes in the voltage and monitor the power

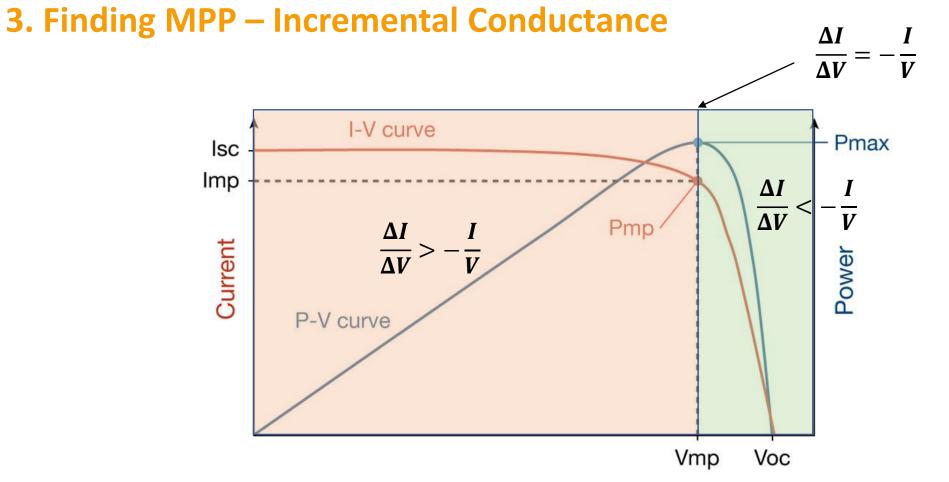



2. Finding MPP – Perturb & Observe

> Make incremental changes in the voltage and monitor the power

3. Finding MPP – Incremental Conductance

$$\frac{dP}{dV} = \frac{d(IV)}{dV} = I\frac{dV}{dV} + V\frac{dI}{dV} = I + V\frac{dI}{dV} \approx I + V\frac{\Delta I}{\Delta V}$$


Incremental conductance

- Increasing voltage to find Vmpp:
- Decreasing voltage to find Vmpp:
- Finding the right voltage Vmpp:

$$\frac{dP}{dV} > 0 \quad \rightarrow \quad \frac{\Delta I}{\Delta V} > -\frac{I}{V}$$
$$\frac{dP}{dV} < 0 \quad \rightarrow \quad \frac{\Delta I}{\Delta V} < -\frac{I}{V}$$
$$\frac{dP}{dV} = 0 \quad \rightarrow \quad \frac{\Delta I}{\Delta V} = -\frac{I}{V}$$

Standards Compliance

- \blacktriangleright Automatic isolation \rightarrow CEI 61727 / IEC 62116
- \succ Electromagnetism compliance \rightarrow EN 55014
- → Harmonics → CEI 61000-3-2
- ➢ Security → EN 60950 / CEI 62109

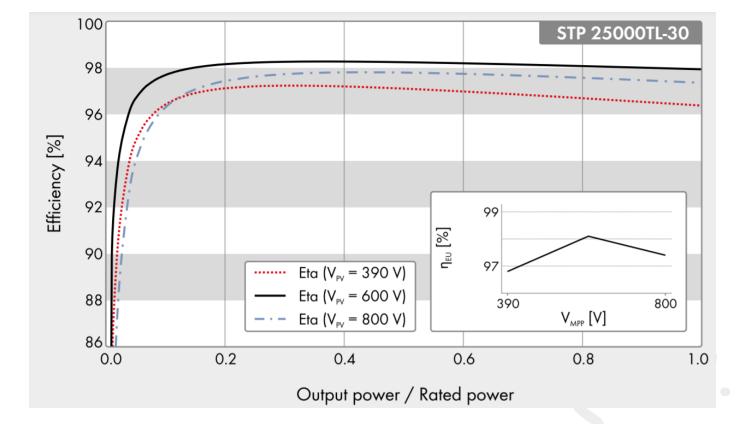
TEST REPORT IEC 61727 / IEC 62116

Photovoltaic (PV) systems Characteristics of the utility interface

Test procedure of islanding prevention measures for utility-interconnected photovoltaic inverters

Agenda of the session

- 1. Inverter objectives & Operation
- 2. Efficiency of grid-connected inverters
- 3. Types of inverters & Market
- 4. Inverter sizing and design
- 5. Inputs on GoPV project

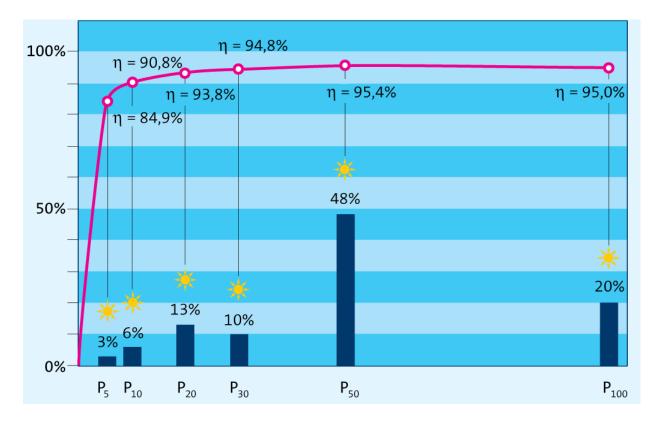


Maximum Efficiency

Efficiency is dependent on:

- Voltage DC range
- Performance of MPPT method
- Output power
- > Types of inverter

$$\eta_{inv} = \frac{P_{AC}}{P_{DC}} \approx 95 - 99\%$$



European & CEC Efficiencies

Weighted efficiencies – Performance across the range of inverter's capacity

European & CEC Efficiencies

Weighted efficiencies – Performance across the range of inverter's capacity

European Weighted Efficiency

 $\eta_{\text{euro}} = 0.03 * \eta_{5\%} + 0.06 * \eta_{10\%} + 0.13 * \eta_{20\%} + 0.10 * \eta_{30\%} + 0.48 * \eta_{50\%} + 0.20 * \eta_{100\%}$

California Energy Commission (CEC) Weighted Efficiency

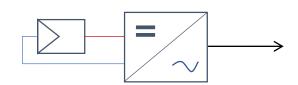
 $\eta_{\text{CEC}} = 0.04 * \eta_{5\%} + 0.05 * \eta_{10\%} + 0.12 * \eta_{20\%} + 0.21 * \eta_{30\%} + 0.53 * \eta_{50\%} + 0.05 * \eta_{100\%}$

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

Agenda of the session

- 1. Inverter objectives & Operation
- 2. Efficiency of grid-connected inverters
- 3. Types of inverters & Market
- 4. Inverter sizing and design
- 5. Inputs on GoPV project

PV inverters – Micro-inverters



⊖ ENPHASE

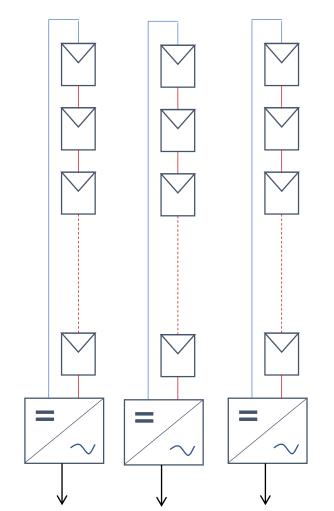
- > Interesting flexibility (one MPPT / module) \rightarrow improving PR
- ➢ Few DC wiring
- Individual power monitoring
- ➢ High cost in USD / Wp
- Less efficient
- Operating on rear-side (thermal exposition)

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

PV inverters – Micro-inverter

Enphase M250 Microinverter

INPUT DATA (DC)	MODELS: M250-60-2LL-S22, M250-60-2LL-S25	MODELS: M250-72-2LL-S22, M250-72-2LL-S25	
Commonly used module pairings ¹	210 - 350+ W	210 - 350+ W	
Compatibility	60-cell PV modules	60-cell and 72-cell PV modules	
Maximum input DC voltage	48 V	62 V	
Peak power tracking voltage	27 V - 39 V	27 V - 48 V	
Operating range	16 V - 48 V	16 V - 60V	
Min/Max start voltage	22 V / 48 V	22 V / 48 V	
Max DC short circuit current	15 A	15 A	
OUTPUT DATA (AC)			
Peak output power	250 W		
Maximum continuous output power	240 W		
Nominal output current	1.15 A @ 208 VAC 1.0 A @ 240 VAC		
Nominal voltage/range	208 V / 183-229 V @ 208 VAC 240 V / 211-264 V @ 240 VAC		
Nominal frequency/range	60.0 / 57-61 Hz		
Extended frequency range ²	57-62.5 Hz		
Power factor	>0.95		
Maximum units per 20 A branch circuit	24 (three-phase 208 VAC) 16 (single phase 240 VAC)		
Maximum output fault current	850 mA rms for 6 cycles		
EFFICIENCY			
CEC weighted efficiency	96.5%		
Peak inverter efficiency	96.5%		
Static MPPT efficiency (weighted, reference EN50530)	99.4%		
Night time power consumption	65 mW max		


DC electrical data

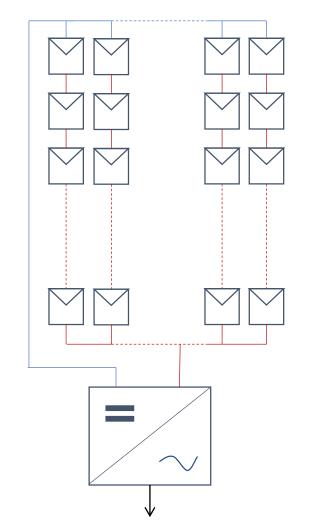
AC electrical data

PV inverters – String Inverters

- Interesting with heterogeneous PV arrays
- Multi-MPPT configuration are possible
- Individual replacement & easy access
- Medium cost in USD / Wp
- Concerns about DC wiring (sometimes important on roof-top)

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

PV inverters – String Inverters



Technical Data	Sunny Boy 4000TL	Sunny Boy 5000TL
Input (DC)		
Max. DC power (at $\cos \varphi = 1$)	4200 W	5250 W ³
Max. input voltage	750 V	750 V
MPP voltage range / rated input voltage	175 V to 500 V / 400 V	175 V to 500 V / 400 V
Min. input voltage / initial input voltage	125 V / 150 V	125 V / 150 V
Max. input current input A / input B	15 A / 15 A	15 A / 15 A
Max. input current per string input A / input B	15 A / 15 A	15 A / 15 A
Number of independent MPP inputs / strings per MPP input	2 / A:2; B:2	2 / A:2; B:2
Output (AC)		
Rated power (at 230 V, 50 Hz)	4000 W	4600 W
Max. AC apparent power	4000 VA	5000 VA ²
Nominal AC voltage / range	220 V, 230 V, 240 V / 180 V to 280 V	220 V, 230 V, 240 V / 180 V to 280
AC power frequency / range	50 Hz, 60 Hz / -5 Hz to +5 Hz	50 Hz, 60 Hz / -5 Hz to +5 Hz
Rated power frequency / rated grid voltage	50 Hz / 230 V	50 Hz / 230 V
Max. output current	22 A	22 A
Power factor at rated power	1	1
Adjustable displacement power factor	0.8 lagging to 0.8 leading	0.8 lagging to 0.8 leading
Feed-in phases / connection phases	1/1	1/1
Efficiency		
Max. efficiency / European Efficiency	97 % / 96.4 %	97 % / 96.5 %

PV inverters – Central Inverters

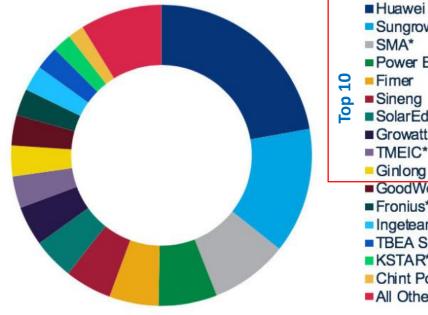
Ingeteam

Clean power for all

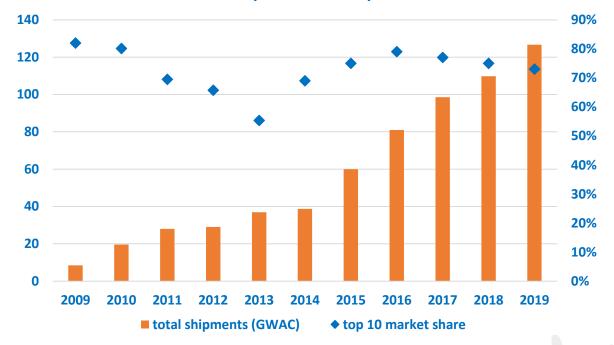
- High efficiency
- Low cost in USD / Wp
- Interesting and easy installation for homogenous PV field
- Some important mismatch losses can occur
- Lot of space required

GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

PV inverters – Central Inverters



Type designation	SG5000UD	SG5000UD-20	
Input (DC)			
Max. PV input voltage	-	1500 V	
Min. PV input voltage / Start-up input voltage	900 V / 915 V	960 V / 990 V	
MPP voltage range for nominal power	900 – 1300 V	960 – 1300 V	
No. of independent MPP inputs		1	
No. of DC inputs	28 (optional: 36)	28(optional: 36 inputs)	
Max. PV input current	5669 A	6112 A	
Max. DC short-circuit current](0000 A	
Output (AC)			
AC output power	5000 kVA @ 45 ℃	5750 kVA @ 25 ° C / 5500 kVA	
AC output power		@ 45 ℃ / 5000 kVA @ 50 ℃	
Max. AC output current	4812 A	5030 A	
Nominal AC voltage	600 V	660 V	
AC voltage range	510 - 660 V	561 – 726 V	
Nominal grid frequency / Grid frequency range	50 Hz / 45 – 55 Hz, 60 Hz / 55 – 65 Hz		
THD	< 3 % (at nominal power)		
DC current injection	< 0.5 % In		
Power factor at nominal power / Adjustable power factor	> 0.99 / 0.8 leading – 0.8 lagging		
Feed-in phases / connection phases	3/3		
Efficiency			
Max. efficiency		99.0%	
European efficiency	98.7 %		



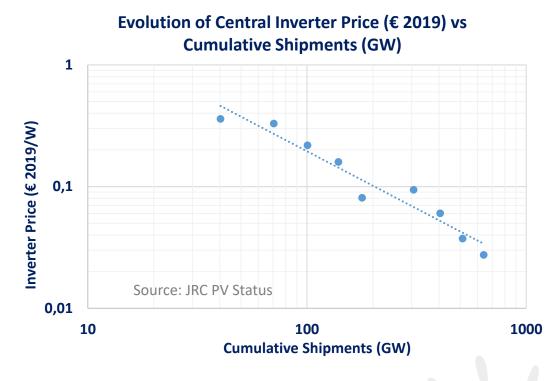
Global PV inverter shipments, 2019 (MW)

CN Sungrow Power Supply CN DE Power Electronics US IT CN SolarEdge Technologies US/IL ■Growatt CN TMEIC* JPN Ginlong Solis CN GoodWe ■ Fronius* Ingeteam TBEA Sunoasis* KSTAR* Chint Power Systems All Others

Annual Inverter Shipments and Top 10 Market Share

* Estimate Source: Wood Mackenzie

PV inverters – Market


Inverter / Converter	Power	Efficiency	Market Share (Estimated)	Remarks
String Inverters	up to 80 kWp	up to 98%	~ 52%	 6 - 17 €-cents /Wp Easy to replace
Central Inverters	More than 80 kWp	up to 98.5%	~ 44%	 ~ 5 €-cents /Wp High reliability Often sold only together with service contract
Micro-Inverters	Module Power Range	90%-95%	~ 1%	 ~ 28 €-cents /Wp Ease-of-replacement concerns
DC / DC Converters (Power Optimizer)	Module Power Range	up to 98.8%	~ 3%	 ~ 9 €-cents /Wp Ease-of-replacement concerns Output is DC with optimized current Still a DC / AC inverter is needed ~ 3 GWp installed in 2017

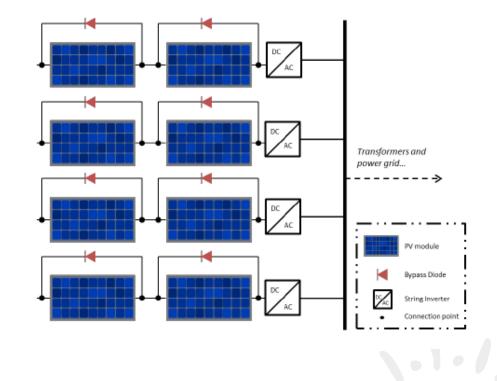
Data: IHS 2016. Remarks: Fraunhofer ISE 2018. Design: PSE GmbH 2018

💹 Fraunhofer

© Fraunhofer ISE

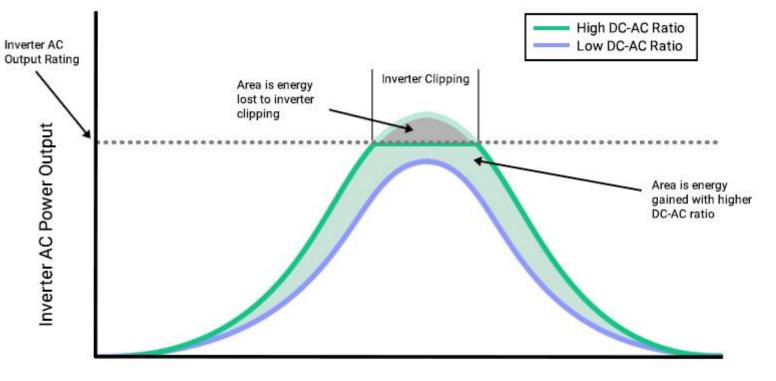
37

Agenda of the session


- 1. Inverter objectives & Operation
- 2. Efficiency of grid-connected inverters
- 3. Types of inverters & Market
- 4. Inverter sizing and design
- 5. Inputs on GoPV project

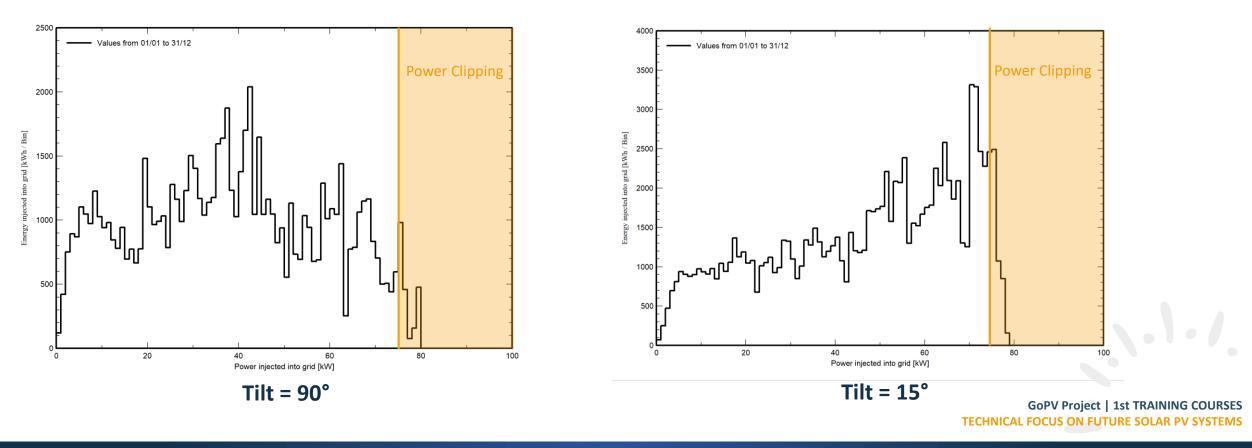
Sizing criteria for inverter selection

- Quality and performance of MPPT method
- Number of MPPT inputs
- Maximum input voltage (typically 1000V or 1500V)
- Large MPP voltage range
- High weighted efficiency (EURO or CEC)
- Output AC power



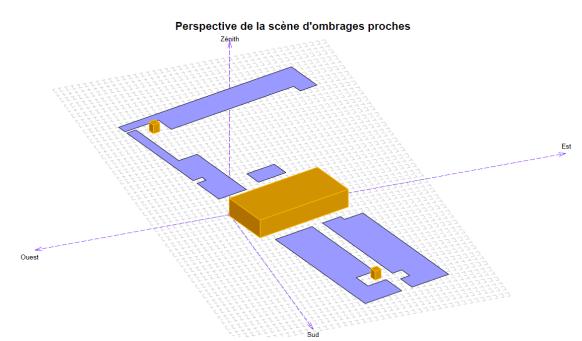
Using DC/AC ratio to undersize inverter

> Typically in the range of 1.05 to 1.25



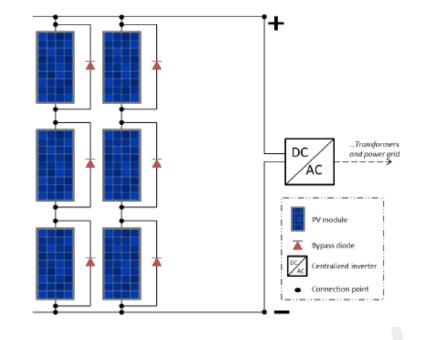
Using DC/AC ratio to undersize inverter

➢ Heavily dependent of PV field type → Case study with a 95 kWp PV plant and ratio = 1.25



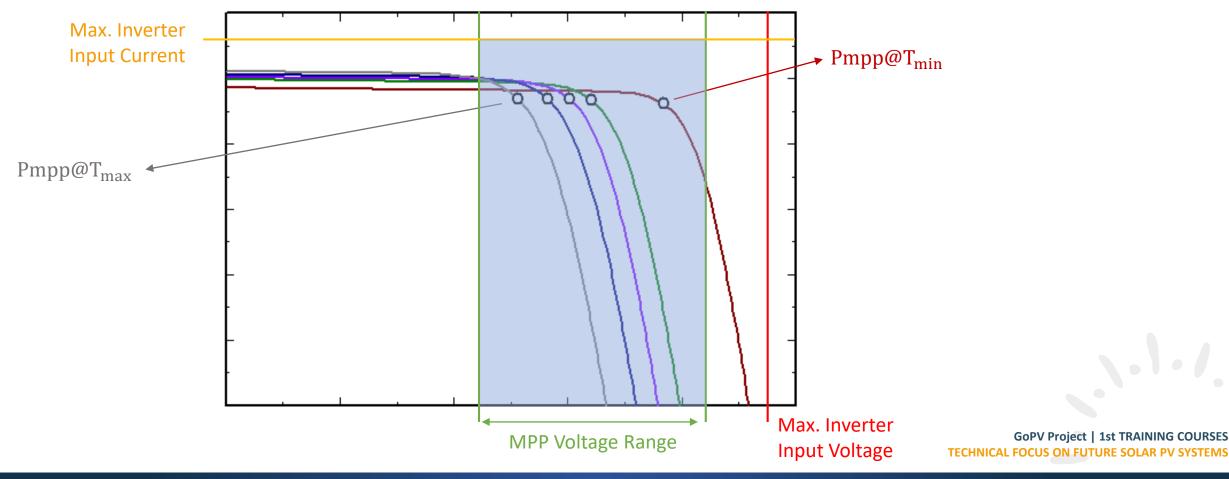
PV inverters – Power Sizing

Multi-MPPT configuration


Module PV Custom parameters definition	Si-poly Modèle Fabricant	P660 305 GCL	-	
Sous-champ "Sous-champ #1" Nombre de modules PV Nombre total de modules PV Puissance globale du champ Caractéristiques de fonct. du champ (En série Nbre modules Nominale (STC) 50℃) U mpp	20 modules 160 48.8 kWc 603 ∨	En parallèle Puissance unitaire Aux cond. de fonct. I mpp	8 chaînes 305 Wc 44.9 kWc (50℃) 74 A
Sous-champ "Sous-champ #2" Nombre de modules PV Nombre total de modules PV Puissance globale du champ Caractéristiques de fonct. du champ (En série Nbre modules Nominale (STC) 50℃) U mpp	19 modules 114 34.8 kWc 573 ∨	En parallèle Puissance unitaire Aux cond. de fonct. I mpp	6 chaînes 305 Wc 32.0 kWc (50°C) 56 A
Sous-champ "Sous-champ #3" Nombre de modules PV Nombre total de modules PV Puissance globale du champ Caractéristiques de fonct. du champ (En série Nbre modules Nominale (STC) 50℃) U mpp	18 modules 36 10.98 kWc 542 ∨	En parallèle Puissance unitaire Aux cond. de fonct. I mpp	2 chaînes 305 Wc 10.10 kWc (50% 19 A
Total Puissance globale champs	Nominale (STC) Surface modules	95 kWc 504 m²	Total	310 modules
Onduleur Custom parameters definition Caractéristiques Tension	Modèle Fabricant n de fonctionnement	SUN2000-36 Huawei Tech 200-1000 V		36.0 kWac
Sous-champ "Sous-champ #1" Sous-champ "Sous-champ #2" Sous-champ "Sous-champ #3"	Nbre d'onduleurs Nbre d'onduleurs Nbre d'onduleurs	4 * MPPT 25 3 * MPPT 25 1 * MPPT 25	% Puissance totale	36 kWac 27 kWac 9.0 kWac
Total	Nbre d'onduleurs	2	Puissance totale	72 kWac

Electrical design in extreme meteorological conditions

- **Max**. Voltage = PV Voltage with **Min**. **Temperature**
- **Min**. Voltage = PV Voltage with **Max**. **Temperature**
- **Max**. Current = PV Current with **Max**. **Global Irradiance**



Electrical design in extreme meteorological conditions

Critical inverter sizing conditions

- Peak Power STC < Output AC Power < Peak power STC * 1.25</p>
- Max. OC Voltage of PV array < Max. Inverter Input Voltage</p>
- Max. MPP Voltage of PV array < Max. Inverter MPP Voltage Range</p>
- Min. MPP Voltage of PV array > Min. Inverter MPP Voltage Range
- Max. SC current of PV array < Max. Inverter SC Input Current


GoPV Project | 1st TRAINING COURSES TECHNICAL FOCUS ON FUTURE SOLAR PV SYSTEMS

Critical inverter sizing conditions

- Peak Power STC < Output AC Power < Peak power STC * 1.25</p>
- ➢ V_{OC}@T_{min} ∗ N_{series} < Max. Inverter Input Voltage</p>
- ▷ V_{MPP}@T_{min} * N_{series} < Max. Inverter MPP Voltage Range</p>
- ▷ V_{MPP}@T_{max} * N_{series} > Min. Inverter MPP Voltage Range
- I_{SC}@T_{max}@G_{max} * N_{parallel} < Max. Inverter SC Input Current</p>

PV inverters – Case study

Critical inverter sizing conditions

Electrical Properties (STC*)

Model		LG335N1C-A5	LG330N1C-A5	LG325N1C-A5
Maximum Power (Pmax)	[W]	335	330	325
MPP Voltage (Vmpp)	[V]	34.1	33.7	33.3
MPP Current (Impp)	[A]	9.83	9.80	9.77
Open Circuit Voltage (Voc)	[V]	41.0	40.9	40.8
Short Circuit Current (Isc)	[A]	10.49	10.45	10.41
Module Efficiency	[%]	19.6	19.3	19.0
Operating Temperature	[°C]	-40 ~ +90		
Maximum System Voltage	[V]	1000 (UL / IEC)		
Maximum Series Fuse Rating	[A]	20		
Power Tolerance	[%]	0~+3		

* STC (Standard Test Condition): Irradiance 1000 W/m², cell temperature 25 °C, AM 1.5 The nameplate power output is measured and determined by LG Electronics at its sole and absolute discretion.

The Typical change in module efficiency at 200 W/m² in relation to 1000 W/m² is -2.0%.

Technical Data	Sunny Tripower 20000TL
Input (DC)	
Max. generator power	36000 Wp
DC rated power	20440 W
Max. input voltage	1000 V
MPP voltage range / rated input voltage	320 V to 800 V / 600 V
Min. input voltage / start input voltage	150 V / 188 V
Max. input current input A / input B	33 A / 33 A
Number of independent MPP inputs / strings per MPP input	2 / A:3; B:3
Output (AC)	
Rated power (at 230 V, 50 Hz)	20000 W
Max. AC apparent power	20000 VA

PV inverters – Case study

Data - Module		Data - Inverter		
Voc,max	45.0 V	Vdc,max	1000 V	
Vmpp,max	37.1 V	Vrange, min	320 V	
Vmpp,min	28.9 V	Vrange,max	800 V	
lsc,max	11.6 A	ldc,max (per MPP)	33 A	

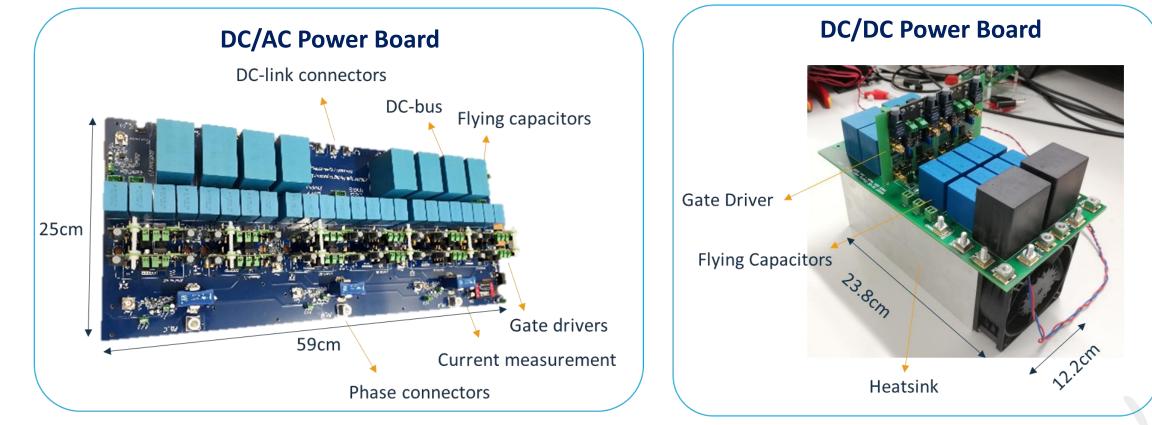
$$V_{OC MAX} * N_{series} \le V_{input max}^{DC} \quad i.e. \qquad N_{series} \le \frac{1000}{45.0} = 22,2 \qquad i.e. \qquad N_{series} \le 22$$

$$V_{mpp MIN} * N_{series} \ge V_{min}^{DC} (MPP) \quad i.e. \qquad N_{series} \ge \frac{320}{28.9} = 11,07 \qquad i.e. \qquad N_{series} \ge 12$$

$$V_{mpp MAX} * N_{series} \le V_{max}^{DC} (MPP) \quad i.e. \qquad N_{series} \le \frac{800}{37.1} = 21,6 \qquad i.e. \qquad N_{series} \le 21$$

$$I_{SC MAX} * N_{parallel} \le I_{max}^{DC} \qquad i.e. \qquad N_{parallel} \le \frac{33}{11,6} = 2,9 \qquad i.e. \qquad N_{parallel} \le 2$$

Agenda of the session


- 1. Inverter objectives & Operation
- 2. Efficiency of grid-connected inverters
- 3. Types of inverters & Market
- 4. Inverter sizing and design
- 5. Inputs on GoPV project

PV inverters – GoPV Project

166kVA multi-MPPT Inverter base on Flying Capacitor topology

➢ Up to 1500 V_{oc} PV string, inject full power on 800V 3∼ grid

Multi MPPT: 2 PV strings per MPPT, 8 MPPT in parallel (= 16 strings)

GLOBAL OPTIMIZATION OF INTEGRATED PHOTOVOLTAIC SYSTEM FOR LOW ELECTRICITY COST

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792059

Thank you for your attention!

Follow us

EPFL

ΪM

Transparent Performance

